Lasmigona complanata

Geographic Range

The white heelsplitter is found in the upper Mississippi River drainage from Pennsylvania west to Minnesota and Iowa and south to Oklahoma and Louisiana. It is also found in the Alabama River drainage, the upper St. Lawrence River system, Lake Winnipeg-Nelson River drainage from western Ontario to Alberta.

In Michigan L. complanata is found in the lower end of various rivers, including Saginaw tributaries, the Grand and Muskegon Rivers as well as a few spots on the Kalamazoo and St. Joseph (Lake Michigan) Rivers. This species was also found in the Detroit River and the Belle, Clinton, and Huron Rivers. Historical records also show it was found in the upper peninsula, in various lakes and the Whitefish River. (Burch, 1975; van der Schalie, 1938)

Habitat

The white heelsplitter is usually in slower waters of medium streams and rivers, and occasionally in small tributaries. In the Huron River it was found deeper waters with sluggish currents or backwater areas. The substrate was soft mud and fine sand bottoms. This species may also be resistant to some pollutants. (Cummings and Mayer, 1992; van der Schalie, 1938; Watters, 1995)

  • Aquatic Biomes
  • rivers and streams

Physical Description

The white heelsplitter is up to 15 cm (6 inches) long , and is ovate to circular in shape. The shape generally depends on the age of the mussels and the growth of the pronounced wing. The shell is relatively thin, compressed and plate-like. The anterior end is broadly rounded, the posterior end rounded to bluntly pointed where the posterior ridge meets the margin. The dorsal margin is straight and the ventral margin is uniformly rounded.

Umbos are low, not being raised above the hinge line. The beak sculpture consists of heavy, double looped ridges.

The periostracum (outer shell layer) is smooth, except for flutes on the wing. Younger individuals may have green and brown rays and are light tan in color. Older specimens are dark brown to black.

On the inner shell, the left valve has two pseudocardinal teeth, the anterior one being low and compressed. The posterior tooth is chunky and grooved. The interdentum sometimes has a high protuberance. The lateral teeth are poorly developed and look like raised extensions of the hinge line. The right valve has one single, long, triangular grooved pseudocardinal tooth. The lateral tooth is rudimentary.

The beak cavity is shallow to moderately deep and narrow. Although the nacre is white to blue-white, occasionally it is iridescent at the posterior end.

In Michigan, this species can be confused with the pink heelsplitter and the fragile papershell. The white and pink heelsplitters are distinguished by the color of their nacre. The pink heelsplitter is also more oval in shape, has a smooth beak sculpture and the wing is not as fluted. The fragile papershell is also more oval in shape, is yellowish, and has reduced hinge teeth. (Cummings and Mayer, 1992; Oesch, 1984; Watters, 1995)

  • Sexual Dimorphism
  • sexes alike
  • Range length
    15 (high) cm
    5.91 (high) in

Development

Fertilized eggs are brooded in the marsupia (water tubes) up to 11 months, where they develop into larvae, called glochidia. The glochidia are then released into the water where they must attach to the gill filaments and/or general body surface of the host fish. After attachment, epithelial tissue from the host fish grows over and encapsulates a glochidium, usually within a few hours. The glochidia then metamorphoses into a juvenile mussel within a few days or weeks. After metamorphosis, the juvenile is sloughed off as a free-living organism. Juveniles are found in the substrate where they develop into adults. (Arey, 1921)

Reproduction

Age to sexual maturity for this species is unknown. Unionids are gonochoristic (sexes are separate) and viviparous. The glochidia, which are the larval stage of the mussels, are released live from the female after they are fully developed.

In general, gametogenesis in unionids is initiated by increasing water temperatures. The general life cycle of a unionid, includes open fertilization. Males release sperm into the water, which is taken in by the females through their respiratory current. The eggs are internally fertilized in the suprabranchial chambers, then pass into water tubes of the gills, where they develop into glochidia.

Lasmigona complanata is a long-term brooder. In the Huron River in Michigan, it was gravid from mid-August to early June. It probably spawns from June to early August in Michigan. (Lefevre and Curtis, 1912; Watters, 1995)

  • Breeding interval
    The white heelsplitter breeds once in the warmer months of the year.
  • Breeding season
    In Michigan, the breeding season is probably June to mid-August.
  • Range gestation period
    10 (high) months

Females brood fertilized eggs in their marsupial pouch. The fertilized eggs develop into glochidia. There is no parental investment after the female releases the glochidia.

  • Parental Investment
  • pre-fertilization
    • provisioning
  • pre-hatching/birth
    • provisioning
      • female

Lifespan/Longevity

The age of mussels can be determined by looking at annual rings on the shell. However, no demographic data on this species has been recorded.

Behavior

Mussels in general are rather sedentary, although they may move in response to changing water levels and conditions. Although not thoroughly documented, the mussels may vertically migrate to release glochidia and spawn. (Oesch, 1984)

Communication and Perception

The middle lobe of the mantle edge has most of a bivalve's sensory organs. Paired statocysts, which are fluid filled chambers with a solid granule or pellet (a statolity) are in the mussel's foot. The statocysts help the mussel with georeception, or orientation.

Mussels are heterothermic, and therefore are sensitive and responsive to temperature.

Unionids in general may have some form of chemical reception to recognize fish hosts. How the white heelsplitter attracts or recognizes its fish host is unknown.

Glochidia respond to touch, light and some chemical cues. In general, when touched or a fluid is introduced, they will respond by clamping shut. (Arey, 1921; Brusca and Brusca, 2003; Watters, 1995)

Food Habits

In general, unionids are filter feeders. The mussels use cilia to pump water into the incurrent siphon where food is caught in a mucus lining in the demibranchs. Particles are sorted by the labial palps and then directed to the mouth. Mussels have been cultured on algae, but they may also ingest bacteria, protozoans and other organic particles.

The parasitic glochidial stage absorbs blood and nutrients from hosts after attachment. Mantle cells within the glochidia feed off of the host’s tissue through phagocytocis. (Watters, 1995)

Predation

Unionids in general are preyed upon by muskrats, raccoons, minks, otters, and some birds. Juveniles are probably also fed upon by freshwater drum, sheepshead, lake sturgeon, spotted suckers, redhorses, and pumpkinseeds.

Unionid mortality and reproduction is affected by unionicolid mites and monogenic trematodes feeding on gill and mantle tissue. Parasitic chironomid larvae may destroy up to half the mussel gill. (Cummings and Mayer, 1992; Watters, 1995)

Ecosystem Roles

Fish hosts are determined by looking at both lab transformations and natural infestations. Looking at both is necessary, as lab transformations from glochidia to juvenile may occur, but the mussel may not actually infect a particular species in a natural situation. Natural infestations may also be found, but glochidia will attach to almost any fish, including those that are not suitable hosts. Lab transformations involve isolating one particular fish species and introducing glochidia either into the fish tank or directly inoculating the fish gills with glochidia. Tanks are monitored and if juveniles are later found the fish species is considered a suitable host.

In lab trials, Lasmigona complanata metamorphosed on the banded killifish, green sunfish, orangespotted sunfish and white crappie. (Cummings and Watters, 2004; Lefevre and Curtis, 1910; Lefevre and Curtis, 1912; Young, 1911)

Species Used as Host

Economic Importance for Humans: Positive

Mussels are ecological indicators. Their presence in a water body usually indicates good water quality.

Economic Importance for Humans: Negative

There are no significant negative impacts of mussels on humans.

Conservation Status

Lasmigona complanata currently has no federal or state conservation status.

Contributors

Renee Sherman Mulcrone (author).

Glossary

Nearctic

living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.

World Map

bilateral symmetry

having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.

chemical

uses smells or other chemicals to communicate

detritivore

an animal that mainly eats decomposed plants and/or animals

detritus

particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).

ectothermic

animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature

fertilization

union of egg and spermatozoan

filter-feeding

a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.

freshwater

mainly lives in water that is not salty.

heterothermic

having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.

internal fertilization

fertilization takes place within the female's body

metamorphosis

A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.

motile

having the capacity to move from one place to another.

native range

the area in which the animal is naturally found, the region in which it is endemic.

parasite

an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death

phytoplankton

photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)

planktivore

an animal that mainly eats plankton

seasonal breeding

breeding is confined to a particular season

sedentary

remains in the same area

sexual

reproduction that includes combining the genetic contribution of two individuals, a male and a female

tactile

uses touch to communicate

vibrations

movements of a hard surface that are produced by animals as signals to others

visual

uses sight to communicate

viviparous

reproduction in which fertilization and development take place within the female body and the developing embryo derives nourishment from the female.

References

Arey, L. 1921. An experimental study on glochidia and the factors underlying encystment. J. Exp. Zool., 33: 463-499.

Brusca, R., G. Brusca. 2003. Invertebrates. Sunderland, Massachusetts: Sinauer Associates, Inc..

Burch, J. 1975. Freshwater unionacean clams (Mollusca: Pelecypoda) of North America. Hamburg, Michigan: Malacological Publications.

Cummings, K., C. Mayer. 1992. Field guide to freshwater mussels of the Midwest. Champaign, Illinois: Illinois Natural History Survey Manual 5. Accessed August 25, 2005 at http://www.inhs.uiuc.edu/cbd/collections/mollusk/fieldguide.html.

Cummings, K., G. Watters. 2004. "Mussel/host data base" (On-line). Molluscs Division of the Museum of Biological Diversity at the Ohio State University. Accessed September 26, 2005 at http://128.146.250.63/Musselhost/.

Lefevre, G., W. Curtis. 1912. Experiments in the artificial propagation of fresh-water mussels. Proc. Internat. Fishery Congress, Washington. Bull. Bur. Fisheries, 28: 617-626.

Lefevre, G., W. Curtis. 1910. Reproduction and parasitism in the Unionidae. Journal of Experimental Zoology, 9: 79-115.

Meglitsch, P., F. Schram. 1991. Invertebrate Zoology, Third Edition. New York, NY: Oxford University Press, Inc.

Oesch, R. 1984. Missouri naiades, a guide to the mussels of Missouri. Jefferson City, Missouri: Missouri Department of Conservation.

Watters, G. 1995. A guide to the freshwater mussels of Ohio. Columbus, Ohio: Ohio Department of Natural Resources.

Young, D. 1911. The implantation of the glochidium on the fish. Univerity of Missouri Bulletin Science Series: 1-20.

van der Schalie, H. 1938. The naiad fauna of the Huron River, in southeastern Michigan. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 40: 1-83.