Toxolasma parvus

Geographic Range

The lilliput is found throughout the Mississippi drainage, in the St. Lawrence drainage and Gulf of Mexico drainages. In general its range includes southern Manitoba south to Texas, east to Mississippi, north to western New York and throughout Michigan and southern Ontario to Minnesota.

In Michigan the lilliput was mainly found in the Raisin and Huron Rivers and tributaries and Lake Erie. It was also historically recorded from the Black River in the west side of the state. (Burch, 1975; Gangloff, 2004; van der Schalie, 1938)

Habitat

Throughout its range, T. parvus is found in sandy or muddy substrates. In the Huron the lilliput was found in the lower reaches of the river in backwater areas that had a muddy substrate. Generally, the lilliput is found in lakes or ponds, or slower moving waters of streams, and medium rivers. (van der Schalie, 1938; Watters, 1995)

  • Aquatic Biomes
  • rivers and streams

Physical Description

The lilliput is up to 3.8 cm (1.5 inches) long, is elliptical and cylindrical and fairly solid . The anterior end and posterior ends are rounded. The dorsal margin is straight and the ventral margin is fairly straight.

Umbos are broad, low, and slightly elevated above the hinge line. The beak sculpture has five or six course concentric ridges.

The periostracum (outer shell layer) is fairly smooth except for growth lines. Color is dark green or brown, turning black in older specimens.

On the inner shell, the left valve has two erect, divergent, triangular pseudocardinal teeth. The two lateral teeth are slightly curved, rough, and moderately long. The right valve has one erect, grooved, triangular pseudocardinal tooth. Anterior to this tooth is a smaller (lamellar) tooth.

The beak cavity is shallow to moderately deep. The nacre is bluish-white and iridescent.

In Michigan, this species can be confused with the purple lilliput. The purple lilliput has a purple nacre and is more rounded and compressed. (Cummings and Mayer, 1992; Oesch, 1984; Watters, 1995)

  • Sexual Dimorphism
  • sexes shaped differently
  • Range length
    3.8 (high) cm
    1.50 (high) in

Development

Fertilized eggs are brooded in the marsupia (water tubes) up to 11 months, where they develop into larvae, called glochidia. The glochidia are then released into the water where they must attach to the gill filaments and/or general body surface of the host fish. After attachment, epithelial tissue from the host fish grows over and encapsulates a glochidium, usually within a few hours. The glochidia then metamorphoses into a juvenile mussel within a few days or weeks. After metamorphosis, the juvenile is sloughed off as a free-living organism. Juveniles are found in the substrate where they develop into adults. (Arey, 1921; Lefevre and Curtis, 1910)

Reproduction

Age to sexual maturity for this species is unknown. Unionids are gonochoristic (sexes are separate) and viviparous. The glochidia, which are the larval stage of the mussels, are released live from the female after they are fully developed.

In general, gametogenesis in unionids is initiated by increasing water temperatures. The general life cycle of a unionid, includes open fertilization. Males release sperm into the water, which is taken in by the females through their respiratory current. The eggs are internally fertilized in the suprabranchial chambers, then pass into water tubes of the gills, where they develop into glochidia.

In the Huron River, the lilliput was gravid throughout the year, except in early August. As a long term brooder, it releases its glochidia in late July and likely spawns shortly thereafter. (Lefevre and Curtis, 1912; van der Schalie, 1938; Watters, 1995)

  • Breeding interval
    The lilliput breeds once in the warmer months of the year.
  • Breeding season
    In Michigan, the breeding season is probably early August
  • Range gestation period
    11 (high) months

Females brood fertilized eggs in their marsupial pouch. The fertilized eggs develop into glochidia. There is no parental investment after the female releases the glochidia.

  • Parental Investment
  • pre-fertilization
    • provisioning
  • pre-hatching/birth
    • provisioning
      • female

Lifespan/Longevity

The age of mussels can be determined by looking at annual rings on the shell. However, no demographic data on this species has been recorded.

Behavior

Mussels in general are rather sedentary, although they may move in response to changing water levels and conditions. Although not thoroughly documented, the mussels may vertically migrate to release glochidia and spawn. (Oesch, 1984; Watters, 1995)

Communication and Perception

The middle lobe of the mantle edge has most of a bivalve's sensory organs. Paired statocysts, which are fluid filled chambers with a solid granule or pellet (a statolity) are in the mussel's foot. The statocysts help the mussel with georeception, or orientation.

Mussels are heterothermic, and therefore are sensitive and responsive to temperature.

Unionids in general may have some form of chemical reception to recognize fish hosts. Mantle flaps in the lampsilines are modified to attract potential fish hosts. How the lilliput attracts its fish hosts is unknown.

Glochidia respond to both touch, light and some chemical cues. In general, when touched or a fluid is introduced, they will respond by clamping shut. (Arey, 1921; Brusca and Brusca, 2003; Watters, 1995)

Food Habits

In general, unionids are filter feeders. The mussels use cilia to pump water into the incurrent siphon where food is caught in a mucus lining in the demibranchs. Particles are sorted by the labial palps and then directed to the mouth. Mussels have been cultured on algae, but they may also ingest bacteria, protozoans and other organic particles.

The parasitic glochidial stage absorbs blood and nutrients from hosts after attachment. Mantle cells within the glochidia feed off of the host’s tissue through phagocytocis. (Arey, 1921; Meglitsch and Schram, 1991; Watters, 1995)

Predation

Unionids in general are preyed upon by muskrats, raccoons, minks, otters, and some birds. Juveniles are probably also fed upon by freshwater drum, sheepshead, lake sturgeon, spotted suckers, redhorses, and pumpkinseeds.

Unionid mortality and reproduction is affected by unionicolid mites and monogenic trematodes feeding on gill and mantle tissue. Parasitic chironomid larvae may destroy up to half the mussel gill. (Cummings and Mayer, 1992; Watters, 1995)

Ecosystem Roles

Fish hosts are determined by looking at both lab metamorphosis and natural infestations. Looking at both is necessary, as lab transformations from glochidia to juvenile may occur, but the mussel may not actually infect a particular species in a natural situation. Natural infestations may also be found, but glochidia will attach to almost any fish, including those that are not suitable hosts. Lab transformations involve isolating one particular fish species and introducing glochidia either into the fish tank or directly inoculating the fish gills with glochidia. Tanks are monitored and if juveniles are later found the fish species is considered a suitable host.

In lab trials, Toxolasma parvus metamorphosed on the green sunfish, Lepomis cyanellus. (Hove, 1995)

Species Used as Host

Economic Importance for Humans: Positive

Mussels are ecological indicators. Their presence in a water body usually indicates good water quality.

Economic Importance for Humans: Negative

There are no significant negative impacts of mussels on humans.

Conservation Status

Toxolasma parvus is not currently considered for conservation status.

Other Comments

This species was formerly called Carunculina parvus.

Contributors

Renee Sherman Mulcrone (author).

Glossary

Nearctic

living in the Nearctic biogeographic province, the northern part of the New World. This includes Greenland, the Canadian Arctic islands, and all of the North American as far south as the highlands of central Mexico.

World Map

bilateral symmetry

having body symmetry such that the animal can be divided in one plane into two mirror-image halves. Animals with bilateral symmetry have dorsal and ventral sides, as well as anterior and posterior ends. Synapomorphy of the Bilateria.

chemical

uses smells or other chemicals to communicate

detritivore

an animal that mainly eats decomposed plants and/or animals

detritus

particles of organic material from dead and decomposing organisms. Detritus is the result of the activity of decomposers (organisms that decompose organic material).

ectothermic

animals which must use heat acquired from the environment and behavioral adaptations to regulate body temperature

fertilization

union of egg and spermatozoan

filter-feeding

a method of feeding where small food particles are filtered from the surrounding water by various mechanisms. Used mainly by aquatic invertebrates, especially plankton, but also by baleen whales.

freshwater

mainly lives in water that is not salty.

heterothermic

having a body temperature that fluctuates with that of the immediate environment; having no mechanism or a poorly developed mechanism for regulating internal body temperature.

internal fertilization

fertilization takes place within the female's body

metamorphosis

A large change in the shape or structure of an animal that happens as the animal grows. In insects, "incomplete metamorphosis" is when young animals are similar to adults and change gradually into the adult form, and "complete metamorphosis" is when there is a profound change between larval and adult forms. Butterflies have complete metamorphosis, grasshoppers have incomplete metamorphosis.

motile

having the capacity to move from one place to another.

native range

the area in which the animal is naturally found, the region in which it is endemic.

parasite

an organism that obtains nutrients from other organisms in a harmful way that doesn't cause immediate death

phytoplankton

photosynthetic or plant constituent of plankton; mainly unicellular algae. (Compare to zooplankton.)

planktivore

an animal that mainly eats plankton

seasonal breeding

breeding is confined to a particular season

sedentary

remains in the same area

sexual

reproduction that includes combining the genetic contribution of two individuals, a male and a female

tactile

uses touch to communicate

vibrations

movements of a hard surface that are produced by animals as signals to others

visual

uses sight to communicate

viviparous

reproduction in which fertilization and development take place within the female body and the developing embryo derives nourishment from the female.

References

Arey, L. 1921. An experimental study on glochidia and the factors underlying encystment. J. Exp. Zool., 33: 463-499.

Brusca, R., G. Brusca. 2003. Invertebrates. Sunderland, Massachusetts: Sinauer Associates, Inc..

Burch, J. 1975. Freshwater unionacean clams (Mollusca: Pelecypoda) of North America. Hamburg, Michigan: Malacological Publications.

Cummings, K., C. Mayer. 1992. Field guide to freshwater mussels of the Midwest. Champaign, Illinois: Illinois Natural History Survey Manual 5. Accessed August 25, 2005 at http://www.inhs.uiuc.edu/cbd/collections/mollusk/fieldguide.html.

Gangloff, M. 2004. "Toxolasma parvus (Barnes 1823), lilliput" (On-line). Invertebrate Collections. Accessed October 10, 2005 at http://www.auburn.edu/academic/science_math/cosam/museum/mollusk/Species/Tparvus.html.

Graf, D. 2002. Historical biogeography and late glacial origin of the freshwater pearly mussel (Bivalvia: Unionidae) faunas of Lake Erie, North America. Occasional Papers of Mollusks, 6: 175-211.

Haag, W., M. Warren. 1997. Host fishes and reproductive biology of six freshwater mussel species from the Mobile Basin, USA. Journal of the North American Benthological Society, 16: 576-585.

Hoeh, W., R. Trdan. 1985. Freshwater mussels (Pelecypoda: Unionidae) of the major tributaries of the St. Clair River, Michigan. Malacological Review, 18: 115-116.

Hove, M. 1995. Suitable fish hosts of the lilliput, Toxolasma parvus. Triannual Unionid Report, 8: 9. Accessed October 04, 2005 at http://ellipse.inhs.uiuc.edu/FMCS/TUR/TUR8.html#p7.

Lefevre, G., W. Curtis. 1912. Experiments in the artificial propagation of fresh-water mussels. Proc. Internat. Fishery Congress, Washington. Bull. Bur. Fisheries, 28: 617-626.

Lefevre, G., W. Curtis. 1910. Reproduction and parasitism in the Unionidae. J. Expt. Biol., 9: 79-115.

Meglitsch, P., F. Schram. 1991. Invertebrate Zoology, Third Edition. New York, NY: Oxford University Press, Inc.

Oesch, R. 1984. Missouri naiades, a guide to the mussels of Missouri. Jefferson City, Missouri: Missouri Department of Conservation.

Watters, G. 1995. A guide to the freshwater mussels of Ohio. Columbus, Ohio: Ohio Department of Natural Resources.

van der Schalie, H. 1938. The naiad fauna of the Huron River, in southeastern Michigan. Miscellaneous Publications of the Museum of Zoology, University of Michigan, 40: 1-83.